Beverly Hills High School -- Honors Math Analysis -- Test \#3 -- 80 points

As usual, show all of your work. Partial credit for partial achievement. Pencils only. Calculators okay.

1) Given these vectors, analytically determine the magnitude and direction of $2 \vec{A}-3 \vec{B}$. Ten points.

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}}=70 \mathrm{~m} / \mathrm{s} @ 20^{\circ} \\
& \overrightarrow{\mathrm{B}}=40 \mathrm{~m} / \mathrm{s} @ 60^{\circ}
\end{aligned}
$$

2) Given these vectors, execute the following operations: $\overrightarrow{\mathrm{A}}=-3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}$

$$
\overrightarrow{\mathrm{B}}=8 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}
$$

$$
\overrightarrow{\mathrm{C}}=7 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}
$$

a) $2 \vec{A}-\vec{B}+\vec{C}$
b) $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{C}}$
c) $\|\vec{B}\|$
3) Eliminate the parameter and determine what figure is presented in each:
a) $x=2 \cos 3 t, y=2 \sin 3 t$
b) $x=2 t-3, y=x^{2}+1$
4) Using DeMoivre's Theorem, determine each of the following completely (only use calculator to verify!):
a) $(2+2 \mathrm{i} \sqrt{3})^{3}$
b) $\sqrt[6]{(\sqrt{3}-\mathrm{i})}$
5) Find the angle between the vectors $\langle 6,-9\rangle$ and $\langle 3,2\rangle$.
6) For two points apiece, give an example of each of these figures, strictly using polar coordinates:
a) a circle of radius 6 \qquad
b) a rose with 12 leaves \qquad
c) a lemniscate \qquad
7) For four points, convert this hyperbolic equation to polar coordinates and solve for r^{2} :

$$
\frac{x^{2}}{9}-\frac{y^{2}}{4}=1
$$

8) Write the following polar equation in rectangular coordinates and determine what it is:

$$
\mathrm{r}=\frac{3}{\sin \theta-2 \cos \theta}
$$

9) Find a correct parameterization for the straight line going thru the points $(-4,7)$ and $(5,-1)$.
10) Determine the distance between the polar coordinate points ($12, \frac{4 \pi}{3}$) and ($8, \frac{\pi}{6}$)
11) What is the unit vector in the same direction as $\vec{v}=-16 \hat{i}+30 \hat{j}$
12) Show how we derived the formula for the angle between two vectors from the Law of Cosines. Five pts.
