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1 Introduction

This section is mandated by the schedules (and was lectured), but it’s all A-level physics. So I’ll just
summarize the salient points extremely briefly.

∗LATEXed by Paul Metcalfe. Comments and corrections to soc-archim-notes@lists.cam.ac.uk
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Planck hypothesised that light of angular frequency ω exists in packets of energy ~ω. ~ is a fundamental
constant of nature, and equals 1.05 × 10−34Js. Einstein’s photoelectric effect confirmed Planck’s idea, the
crucial formula being ~ω = E +W . Photons are massless particles, and so move at c.

The Bohr atom. To explain atomic spectra, Bohr suggested that angular momentum was quantized in
units of ~, so using

mvR = N~

and

mv2

R
=

1

4πε0

e2

R2

gives the allowed radii. In good agreement with experiment, but has two major flaws. Firstly, can only be
used for hydrogen atom and secondly is a load of rubbish.

De Broglie suggested that associated with a particle of momentum p is a wave with wave vector k = p

~
.

2 The Schrödinger Equation

This is not relativistic and only works for a single particle in a potential U(x, t).

i~
∂ψ

∂t
= −

~
2

2m
∇2ψ + U(x, t)ψ

It is, however, the remainder of this course...
For a free particle with U ≡ 0, the solution is

ψ(x, t) = Aei(k.x−ωt).

We interpret ~k as the momentum of the particle and ~ω as the kinetic energy.
Note that

• ψ is complex,

• Schrödinger equation is linear,

• ψ is called the state of the particle and

• the Schrödinger equation governs how the state evolves in time.

It is postulated that any solution of the Schrödinger equation is an allowed physical state.

2.1 Probabilistic Interpretation of ψ

The probability of finding the particle in an infinitesimal region dV centered on x is postulated to be
|ψ(x, t)|

2
dV .

ψ must be normalised, i.e.

∫

R3

|ψ(x, t)|
2
dV = 1.

There is still freedom to multiply by eiα – this has no physical consequences. Some wavefunctions are
not normalisable, and are regarded as idealisations of physically realisable ones.
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2.1.1 Probability Flux and Conservation of probability

If the potential is real, then consider the Schrödinger equation and it’s complex conjugate

i~
∂ψ

∂t
= −

~
2

2m
∇2ψ + U(x, t)ψ

i~
∂ψ∗

∂t
= −

~
2

2m
∇2ψ∗ + U(x, t)ψ∗,

and calculate ∂ψψ∗

∂t
to get

∂ψψ∗

∂t
+ ∇.(−

i~

2m
(ψ∗∇ψ −∇ψ∗ψ)) = 0,

an analogue of conservation of charge.

J = −
i~

2m
(ψ∗∇ψ −∇ψ∗ψ)

is called the probability current.

2.2 Stationary States

If U is independent of time, we can separate the Schrödinger equation to get

ψ(x, t) = χ(x)e−iωt,

with

Hχ = Eχ,

where E is the energy ~ω and H is the Hamiltonian operator

H = −
~

2

2m
∇2 + U.

This wavefunction is called a stationary state with energy E. ψ is normalised iff χ is normalised. In a
stationary state, the probability density is |χ|

2
and depends only on position. Since H is real, E is real. If

χ is real, then J = 0.
The general solution of the Schrödinger equation with a static potential is a superposition of stationary

states, i.e. suppose H has eigenvalues E1, E2, . . . with corresponding eigenfunctions χ1, χ2, . . . . Then

ψ(x, t) =

∞
∑

n=1

anχn(x)e−
iEnt

~ .

ψ is normalised iff

∞
∑

n=1

|an|
2

= 1.

This can all be generalised to non-normalisable states and continuum and degenerate eigenvalues.

3



2.3 Gaussian Wave Packet

We superpose plane wave solutions to get a localised particle.

ψ(x, t) =

∫

R

e−
σ(k−k0)2

2 ei(kx−
~k

2

2m
t)dk

This integral “simplifies” (honestly!) to give

ψ(x, t) =
const

√

σ + i~t
m

exp
1

2

(

k0t+ ix

σ + i~t
m

)2

.

ψψ∗ =
const′

√

σ2 + ~2t2

m2

exp−σ

(

x− ~k0
m
t
)2

σ2 + ~2t2

m2

,

which is a Gaussian in x, centered at ~k0
m
t. ψ is normalised if const′ =

√

σ
m

.

Particle moves along at a speed ~k0
m

= average momentum
mass . The width of the packet changes with time and

is narrowest at t = 0.

2.4 Particle in infinite potential well (1–D)

This has a potential

U(x) =

{

0 0 < x < a;

∞ otherwise.

Look for stationary states, i.e. solutions of

−~
2

2m

∂2χ

∂x2
= Eχ,

with χ(0) = χ(a) = 0 since χ = 0 where U is infinite. Not too hard to get

χn(x) =

√

2

a
sin

nπx

a

with

En =
~

2

2m

n2π2

a2
.

2.5 Remarks on bound states

The stationary state equation is

−
~

2

2m

∂2χ

∂x2
+ U(x)χ = Eχ,

with U → U0 as x → ±∞. This equation has 2 linearly independent solutions. If E > U0, both of this
are oscillatory as x → ±∞ and there is no bound state. If E < U0, one soln decays exponentially one way
and grows exponentially the other way. For special E, the eigenvalues, this doesn’t happen and there is one
solution which decays exponentially as x → ±∞. This solution is unique up to normalisation. The other
solution is not normalisable. The eigenvalues correspond to bound states with E < U0.
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2.6 Remarks on continuity

If U is smooth, so is χ. If U has a finite discontinuity, then χ and χ′ are continuous, but χ′′ is discontinuous.
If U has an infinite discontinuity, usually χ is continuous, χ′ discontinuous and χ = 0 where U infinite.

2.7 Remarks on parity

If U(x) = U(−x), then bound states are either even or odd, since if χ(x) is a solution with energy E, so is
χ(−x) and hence is a multiple of χ(x).

2.8 Finite Potential Well (1D)

U(x) =

{

0 −a < x < a

U0 otherwise.

Look for even parity bound states. Let k =
√

2mE
~2 and κ =

√

2m(U0−E)
~2 . Then we have to solve

∂2χ

∂x2
+ k2χ = 0 if |x| < a,

and

∂2χ

∂x2
− κ2χ = 0 if |x| > a,

with χ and χ′ continuous at x = ±a. Easily obtain

χ(x) =

{

A cos kx |x| < a;

Be−κ|x| |x| > a.

Now impose continuity on 1
χ
∂χ
∂x

at x = ±a to get

k tan ka = κ.

We also have

k2 + κ2 =
2mU0

~2
.

Solve numerically or graphically. Number of solutions increases with ka and there is always one solution is
U0 > 0. The energy is

E =
~

2k2

2m
.

2.9 Scattering problems

Ideally, we would like to study the scattering of wavepackets on some potential. The evolution of such
scattering is complicated, and finding the probabilities for reflection and transmission is not nice... So we
look for stationary states.
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2.9.1 Potential step

U(x) =

{

0 x < 0;

U0 x > 0.

If E < U0, let k =
√

2mE
~2 and κ =

√

2m(U0−E)
~2 . Solve appropriate ode’s and impose continuity at x = 0

to get

χ(x) =

{

eikx +Ae−ikx x < 0,

Be−κx x > 0.

with A = k−iκ
k+iκ and B = 2k

k+iκ . |A|2 is the probability of reflection, and equals 1.

If E > U0, let k =
√

2mE
~2 and κ =

√

2m(E−U0)
~2 . Solve appropriate ode’s and impose continuity at x = 0

to get

χ(x) =

{

eikx +Ae−ikx x < 0,

Beiκx x > 0.

with A = k−κ
k+κ and B = 2k

k+κ . |A|
2

is the probability of reflection, and if E � U0, |A|
2
≈ 0. This is the

classical limit.
|B|2 is the probability of finding a particle in x > 0. The decrease in speed bunches up the particles and

we need to compensate for this. The transition probability is κ
k
|B|

2
, which takes account of the change in

momentum.

2.9.2 Quantum Tunneling

U(x) =

{

U0 0 < x < a;

0 otherwise.

Suppose E < U0 and let k =
√

2mE
~2 and κ =

√

2m(U0−E)
~2 . Get

χ(x) =











eikx +Ae−ikx x < 0;

Be−κx + Ceκx 0 ≤ x ≤ a;

Deikx x > a.

Impose continuity and do painful algebra to get...

D =
−4ikκ

(κ− ik)2e(ik+κ)a − (κ+ ik)2e(ik−κ)a

and

probability of tunneling = |D|
2

=
4k2κ2

(k2 + κ2)2 sinh2 κa+ 4k2κ2
,

which although exponentially small if ka is large, is non-zero. Tunneling probabilities in real systems exhibit
an enormous range, e.g. the half-lives for α decay range from 10−8 seconds to 1010 years.
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2.10 The Quantum Harmonic Oscillator

U(x) =
1

2
mω2x2

Solve

−~
2

2m

∂2χ

∂x2
+

1

2
mω2x2χ = Eχ.

Put ξ =
√

mω
~
x and ε = 2E

~ω
. Now must solve

−
∂2χ

∂ξ2
+ ξ2χ = εχ.

Try χ(ξ) = f(ξ)e−
1
2 ξ

2

. Solve for f using power series to get

f(ξ) =

∞
∑

n=0

anξ
n

and

an+2 =
2n+ 1 − ε

(n+ 2)(n+ 1)
an.

A non-terminating series is unacceptable, since then χ ∼ e
1
2 ξ

2

. So series terminates, with implies ε is odd.
fN (ξ) is the N th Hermite polynomial HN (ξ). EN = (N + 1

2 )~ω. ~ω
2 is called the zero-point energy of the

oscillator.

N EN χN (ξ)

0 1
2~ω e−

1
2 ξ

2

1 3
2~ω ξe−

1
2 ξ

2

2 5
2~ω (1 − 2ξ2)e−

1
2 ξ

2

3 7
2~ω (ξ − 2

3ξ
3)e−

1
2 ξ

2

3 Observables and Operators

In quantum mechanics, physical numbers such as position, velocity etc. are represented by operators. These
are chosen such that a state with a definite value for the quantity is an eigenfunction of the operator, with
the value being the eigenvalue of the operator.

The operators look the same as their values.
Energy is represented by the Hamiltonian

H =
−~

2

2m
∇2 + U.

Momentum is represented by

p = −i~∇.

Note that

H =
1

2m
p.p + U(x),

which is reassuring.
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The position operators x1, x2, x3 act by multiplication, so f is an eigenfunction of x if

xf(x) = Xf(x)

for constant X. f must be a delta function, and δ(x1 −X1)δ(x2 −X2)δ(x3 −X3) is an eigenfunction of x

with eigenvalue X.
Angular momentum is defined as expected

L = x ∧ p

= −i~x∧∇.

In general, a state is not an eigenfunction.

3.1 Canonical Commutation Relations

Operators do not necessarily commute.
The commutator of O1 and O2 is O1O2−O2O1 and is written [O1, O2]. O1 and O2 commute iff [O1, O2] =

0.

• [xi, xj ] = 0

• [pi, pj ] = 0

• [xi, pj] = i~δij1.

These are easily proven.

3.2 Hermitian Operators

An operator O is Hermitian if

∫

R3

v∗(x)(Ou)(x)d3x =

∫

R3

((Ov)(x))∗u(x)d3x.

for all u,v decaying at infinity.
All the operators we have seen so far are Hermitian (easily proven).

3.2.1 Eigenvalues and Eigenfunctions of Hermitian operators

Suppose O is a Hermitian operator, with eigenvalues λn and normalised eigenfunctions Un(x). Then

λm

∫

y∗nym =

∫

y∗nOym

= λ∗n

∫

y∗myn.

Putting m = n gives λn real, and m 6= n gives that

∫

yny
∗
m = 0.

Any decaying U(x) can be written as a linear combination of the Un.
It is postulated that :-

• Each dynamical variable is represented by a Hermitian operator,
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• If the normalised wavefunction at a given time is ψ(x) =
∑

anUn(x), with the Un normalised eigen-

functions, then the probability that the particle is in state n is |an|
2.

• If an experiment is carried out and the particle is found to be in state n, then immediately afterwards
ψ(x) = Un(x). Further evolution of the system is governed by the Schrödinger equation.

We can simultaneously measure observables whose operators commute, since such operators have a com-
plete set of simultaneous eigenfunctions.

3.3 Expection

A measurement of O gives outcome λn with probability |an|
2
. The expectation of O, 〈O〉 =

∑

λn |an|
2
.

It is easy to prove that 〈O〉 =
∫

ψ∗Oψ.
In a stationary state, 〈x〉 and 〈p〉 are constant.
It is easy to see that 〈E〉 is independent of time, and this can be interpreted as conservation of energy.

3.4 Uncertainty Principle

The uncertainty of the observable O is ∆O, where (∆O)2 = 〈(O − 〈O〉)2〉. There are wavefunctions which
have ∆O = 0. Given two observables with commuting operators, we can make ∆O1 and ∆O2 arbitrarily
small by choosing simultaneous eigenfunctions. We have an inequality

(∆O1)
2(∆O2)

2 ≥
1

4
〈i [O1, O2]〉

2,

which gives the Heisenberg Uncertainty principle

∆x∆p ≥
1

2
~.

The Gaussian achieves equality.

4 Schrödinger Equation in Three Dimensions

Assume a spherically symmetric potential U(r) and look at the spherically symmetric stationary states χ(r).
Get

−~
2

2mr

∂2rχ

∂r2
+ U(r)χ = Eχ.

with χ(0) finite and limr→0 χ = 0 for a bound state. Let σ(r) = rχ(r) to get something familiar...

−~
2

2m

∂2σ

∂r2
+ U(r)σ = Eσ,

σ(0) = 0, which gives the 1-D Schrödinger equation on the whole line, with a reflection symmetric potential
and an odd parity σ.

The spherical harmonic oscillator (U(r) = 1
2mω

2r2) and potential well (U(r) = 0(r < a), U0(r > a))
follow through, with the proviso that no bound states need exist for the potential well.

4.1 Spherically symmetric bound states for Hydrogen atom

Let U(r) = −β
r

, with β = e2

4πε0
and solve

−~
2

2me

(
∂2χ

∂r2
+

2

r

∂χ

∂r
) −

βχ

r
= Eχ.

9



Let ν2 = −2meE
~2 and α = − 2meβ

~2 .

∂2χ

∂r2
+

2

r

∂χ

∂r
+
α

r
χ− ν2χ = 0.

Asymptotically, χ ∼ e−νr, so put χ(r) = f(r)e−νr and try a power series solution for f to get

an

an−1
=

2νn− α

n(n+ 1)
.

The series must terminate, otherwise χ ∼ eνr, so α = 2νn for some n.

EN =
−meβ

2

2N2~2
=

−mee
4

32π2ε20~2

1

N2
,

as in the Bohr model.
χN = LN (νr)e−νr , where LN is the N th Laguerre polynomial. For normalisation,

4π

∫ ∞

0

χ2(r)r2dr = 1.

The Bohr radius is R0 = 2
α

= ~
2

meβ
. In the N th state, 〈r〉 = 3

2N
2R0. Get spectral lines etc..

4.2 Angular Momentum Operators

L = x ∧ p

Lj = i~εjklxk
∂

∂xl

It can be shown by expanding out that

[Lj , Lk] = i~εjklLl.

Define L2 = L2
1 + L2

2 + L2
3. Now L2 commutes with all the Li (use

[

A,B2
]

= [A,B]B +B [A,B]).
Now

[Li, xj ] = i~εijkxk,

[Li, pj ] = i~εijkpk

and

[Li, U(r)] = 0 for spherically symmetric U.

It is now easy to show that
[

Li,∇
2
]

= 0 and so [Li, H ] = 0 and
[

L2, H
]

= 0. Thus H,L2 and L3

commute if the potential is spherically symmetric. L3 is the conventional choice of component. Thus the
simultaneous eigenfunctions of H,L2 and L3 form a complete set of functions.

10



4.3 Eigenfunctions of L2 and L3

For L3,

−i~
∂f

∂φ
= λf

gives

f(φ) = eimφ.

Since the eigenfunction should be unchanged by φ → φ + 2π, m ∈ Z. The possible values of L3 are
an integer × ~, which looks like Bohr’s hypothesis. The simultaneous eigenfunctions of L3 and L2 are the
spherical harmonics, which, un-normalised, are

Yl,m(θ, φ) = Pl,m(θ)eimφ, l ≥ 0 and − l ≤ m ≤ l.

Pl,m is an associated Legendre function Pl,m(θ) = (sin θ)|m| ∂
|m|Pl(cos θ)
∂θ|m| and Pl is the lth Legendre poly-

nomial.
Or, Pl,m is the solution to

(

−1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

−
m2

sin2 θ

)

Pl,m(θ) = l(l + 1)Pl,m(θ).

The eigenvalues are L3Yl,m = ~mYl,m and L2Yl,m = ~
2l(l+ 1).

4.4 Schrödinger Equation with spherically symmetric potential

−~
2

2M

(

∂2χ

∂r2
+

2

r

∂χ

∂r
+

1

r2

(

1

sin θ

∂

∂θ

(

sin θ
∂χ

∂θ

)

+
1

sin2 θ

∂2χ

∂φ2

))

+ U(r)χ = Eχ

Separate variables to put χ(r, θ, φ) = g(r)Yl,m(θ, φ). This simplifies the above equation to

−~
2

2M

(

∂2g

∂r2
+

2

r

∂g

∂r

)

+

(

U(r) +
~

2

2M

l(l + 1)

r2

)

g = Eg.

There is an effective potential of U(r) + ~
2

2M
l(l+1)
r2

, giving a centrifugal repulsion. We seek bound states
with E < 0.

Put α = 2meβ
~2 and ν2 = −2meE

~2 . Asymptotically g(r) = e−νr, so try g(r) = e−νrf(r). The equation now
simplifies to

∂2f

∂r2
+

(

2

r
− 2ν

)

∂f

∂r
−
l(l + 1)

r2
f +

1

r
(α− 2ν) f = 0.

Try a series solution f(r) =
∑∞

n=0 anr
n+σ . The indicial equation gives σ = l, and the rest reduces to

an

an−1
=

(n+ l)2ν − α

n(n+ 2l + 1)

. This must terminate, so ν = α
2(n+l) , or α = 2νN . EN = −mee

4

32π2ε20~2
1
N2 is familiar. The complete unnormalised

wavefunction

χN,l,m(r, θ, φ) = rlLN,l(
αr

2N
)e

−αr

2N Yl,m(θ, φ).

LN,l is a generalised Laguerre polynomial.
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4.5 Energy Levels

Energy only depends on N (the principal quantum number).

EN =
−mee

4

32π2ε20~2

1

N2

The allowed values for l,m for given N are 0 ≤ l < N and −l ≤ m ≤ l. The total degeneracy of EN is
∑N−1

l=0 (2l+ 1) = N2. This large degeneracy is a feature of the Coulomb potential.
N is called the principal quantum number, l is the total angular momentum quantum number and m is

the magnetic quantum number (a magnetic field along 3rd axis removes this degeneracy.

4.6 Relation with Bohr orbit

The Bohr picture emerges if N is large, l ≈ N . If m = l ≈ N then the electron has an angular momentum
component about the 3rd axis ≈ ~N and the total angular momentum ≈ ~N .

Consider the radial part of the wavefunction with l = N − 1, g(r) = rle
−αr

2N . The radial probability

density is proportional to r2g2(r) ≈ r2Ne−αrN , which has a maximum at r = 2N2

α
= N2R0, agreeing with

the Bohr model.

The syllabus ends here. The lecturer went on to discuss atoms with more than one electron. It was
covered at approximately A-level Chemistry standard (although considerably quicker).
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