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1 Introduction

This section is mandated by the schedules (and was lectured), but it’s all A-level physics. So T'll just
summarize the salient points extremely briefly.

*IATEXed by Paul Metcalfe. Comments and corrections to soc-archim-notes@lists.cam.ac.uk



Planck hypothesised that light of angular frequency w exists in packets of energy fw. F is a fundamental
constant of nature, and equals 1.05 x 1073*.Js. Einstein’s photoelectric effect confirmed Planck’s idea, the
crucial formula being iw = E + W. Photons are massless particles, and so move at c.

The Bohr atom. To explain atomic spectra, Bohr suggested that angular momentum was quantized in
units of A, so using

muvR = Nh
and
mu? _ 1 €2
R 4meo R?

gives the allowed radii. In good agreement with experiment, but has two major flaws. Firstly, can only be
used for hydrogen atom and secondly is a load of rubbish.
De Broglie suggested that associated with a particle of momentum p is a wave with wave vector k = 2.

2 The Schrodinger Equation

This is not relativistic and only works for a single particle in a potential U (x, t).

R
zhE = —%V Y+ U, t)y

It is, however, the remainder of this course...
For a free particle with U = 0, the solution is

Y(x,t) = Aeilkex—wt),

We interpret ik as the momentum of the particle and Aw as the kinetic energy.
Note that

e 1) is complex,

e Schrodinger equation is linear,

e 1 is called the state of the particle and

e the Schrédinger equation governs how the state evolves in time.

It is postulated that any solution of the Schrédinger equation is an allowed physical state.

2.1 Probabilistic Interpretation of v

The probability of finding the particle in an infinitesimal region dV centered on x is postulated to be
(. 1) V.

1 must be normalised, i.e.
/ lh(x, 1) dV = 1.
R3

There is still freedom to multiply by e’® — this has no physical consequences. Some wavefunctions are
not normalisable, and are regarded as idealisations of physically realisable ones.



2.1.1 Probability Flux and Conservation of probability

If the potential is real, then consider the Schrédinger equation and it’s complex conjugate

R
. 8¢* _ hQ 2 % *
Zh 8t = _%v "/] +U(X7t)w 9
and calculate 8%? to get
Ny~ ihoo £V
S Vg (1YY = V) = 0,

an analogue of conservation of charge.
ih * *
J = —3 (V" Vi = Vi)
m
is called the probability current.

2.2 Stationary States

If U is independent of time, we can separate the Schrodinger equation to get
b(x,t) = x(x)e ™",
with
Hx = EX,
where F is the energy hw and H is the Hamiltonian operator

hQ
H=-—V?+U.
2m

This wavefunction is called a stationary state with energy E. 1 is normalised iff x is normalised. In a
stationary state, the probability density is |x|* and depends only on position. Since H is real, E is real. If
X is real, then J = 0.

The general solution of the Schrédinger equation with a static potential is a superposition of stationary
states, i.e. suppose H has eigenvalues F1, Es,... with corresponding eigenfunctions x1, x2,.... Then

iEnt

Y(x,t) = Z apXn(x)e”
n=1

1) is normalised iff

o0
> an* =1.
n=1

This can all be generalised to non-normalisable states and continuum and degenerate eigenvalues.



2.3 Gaussian Wave Packet

We superpose plane wave solutions to get a localised particle.

Y(a,t) = / ¢~ ST gilla— 00 g
R

This integral “simplifies” (honestly!) to give

2
1 )
W, t) = const exp_<k0t+zx> .

\/U—f—% 2 U""%

2
const’ (x - %t)
—exp-o— 2~
242
o+ B
ag

which is a Gaussian in z, centered at %t. % is normalised if const’ = /2.

Particle moves along at a speed % = W The width of the packet changes with time and
is narrowest at t = 0.

NS

3

h2t2
o+ o

2.4 Particle in infinite potential well (1-D)
This has a potential

U(x)z{o 0<x<.a;
oo otherwise.

Look for stationary states, i.e. solutions of

—x

=F
2m Ox? X

with x(0) = x(a) = 0 since x = 0 where U is infinite. Not too hard to get

2 . nmx
Xn(z) = o sin——

with
K2 n?n?
" 9m a2

2.5 Remarks on bound states
The stationary state equation is

h? 0%y

—_— = E
5 92 (x)x = Ex,

with U — Uy as * — Foo. This equation has 2 linearly independent solutions. If E > Uy, both of this
are oscillatory as  — +o0o and there is no bound state. If E < Uy, one soln decays exponentially one way
and grows exponentially the other way. For special E, the eigenvalues, this doesn’t happen and there is one
solution which decays exponentially as © — +oo. This solution is unique up to normalisation. The other
solution is not normalisable. The eigenvalues correspond to bound states with E < Uj.



2.6 Remarks on continuity

If U is smooth, so is x. If U has a finite discontinuity, then y and x’ are continuous, but x”’ is discontinuous.
If U has an infinite discontinuity, usually x is continuous, X’ discontinuous and y = 0 where U infinite.

2.7 Remarks on parity

If U(z) = U(—=), then bound states are either even or odd, since if x(z) is a solution with energy FE, so is
X(—z) and hence is a multiple of x(z).

2.8 Finite Potential Well (1D)

0 —
U(x) _ a < x <a
Uy otherwise.

Look for even parity bound states. Let k = 4/ 2’}?213 and Kk = 4/ W Then we have to solve

52

8—a:>§+k2X:01f |z| < a,
and

82

a—;g—KQXZOif |z| > a,

with x and X’ continuous at z = da. Easily obtain

() Acoskz |z| < a;
xTr) =
X Be® 2] > a.

Now impose continuity on %g—;‘ at © = +a to get

ktan ka = k.

We also have

2mU,
2 2 0
k* 4+ Kr° = h

Solve numerically or graphically. Number of solutions increases with ka and there is always one solution is
Up > 0. The energy is

h2k?
E= Cye
2.9 Scattering problems

Ideally, we would like to study the scattering of wavepackets on some potential. The evolution of such
scattering is complicated, and finding the probabilities for reflection and transmission is not nice... So we
look for stationary states.



2.9.1 Potential step

Ulz) = 0 x<0;
Uy x>0.

If E<Uy,let k=4/ 2’;?2}3 and Kk = 4/ W Solve appropriate ode’s and impose continuity at x = 0
to get

( ) eikr _|_Ae—1'kz T < 0’
€Tr) =
X Be™"* x> 0.

with A = 112112 and B = k-2i-kil€' |A|2 is the probability of reflection, and equals 1.

If £E> Uy, let k=,/ QZZE and Kk =4/ w Solve appropriate ode’s and impose continuity at x =0
to get

(@) ek 4 Ae—thr g <,
z) = .
X Be'® x> 0.

with A = 2% and B = 2&. |A[® is the probability of reflection, and if £ > Uy, |A|* ~ 0. This is the

classical limit.

|B|2 is the probability of finding a particle in > 0. The decrease in speed bunches up the particles and
we need to compensate for this. The transition probability is 7 |B|2, which takes account of the change in
momentum.

2.9.2 Quantum Tunneling

0 otherwise.

Suppose E < Uy and let k = 4/ 2’;?2}3 and kK = 4/ W Get

eikx + Ae—ikx T < 0;
x(z) = § Be " + Ce™ 0 <z <a;
Deike T > a.

U(CC)Z{UO 0<zx<a;

Impose continuity and do painful algebra to get...

—4ikk

D= | |
(k — ik)2e(ik+m)a — (i 4 jk)2elk—r)a

and
probability of tunneling = |D|2
4k? K2
(k2 4 K2)2 sinh? ka + 4k2K2’

which although exponentially small if ka is large, is non-zero. Tunneling probabilities in real systems exhibit
an enormous range, e.g. the half-lives for o decay range from 108 seconds to 10'° years.



2.10 The Quantum Harmonic Oscillator

1
U(z) = gmw2x2
Solve
—h? 82X 2.2
— = E
2m Ox? + gt X X

Put { = \/%=x and € = % Now must solve

%

_8—52 + 52)( = €X-

Try x(€) = f(£)e=25". Solve for f using power series to get

FO =Y ant"
n=0
and

2n+1—e€
(7% = Q7 0an.
P )+

. . . . - 12 . . . . . .
A non-terminating series is unacceptable, since then x ~ e2¢ . So series terminates, with implies € is odd.

fn(€) is the N** Hermite polynomial Hy(£). Ex = (N + %)hw %“’ is called the zero-point energy of the
oscillator.

3 Observables and Operators

=
Z

xn (€

w o = o=

In quantum mechanics, physical numbers such as position, velocity etc. are represented by operators. These
are chosen such that a state with a definite value for the quantity is an eigenfunction of the operator, with
the value being the eigenvalue of the operator.

The operators look the same as their values.

Energy is represented by the Hamiltonian

—h?
H=_—V*+U.
2m

Momentum is represented by
p = —thV.
Note that

1
H= om PP +U(x),

which is reassuring.



The position operators x1, z2, x3 act by multiplication, so f is an eigenfunction of x if

xf(z) = Xf(x)

for constant X. f must be a delta function, and §(x; — X1)d(x2 — X2)d(x3 — X3) is an eigenfunction of x
with eigenvalue X.
Angular momentum is defined as expected

L=xAp
= —thx A V.

In general, a state is not an eigenfunction.

3.1 Canonical Commutation Relations

Operators do not necessarily commute.
The commutator of O1 and Os is O102— 0201 and is written [O1, O2]. O and Oy commute iff [O1, Os] =
0.

o [z;,z;]=0
b [pi;pj] =0
L] [:Ei,pj] = ihéijl.

These are easily proven.

3.2 Hermitian Operators

An operator O is Hermitian if

/V*(X)(Ou)(x)de:/ (Ov)(x))*u(x)d®z.
RS

R3

for all u, v decaying at infinity.
All the operators we have seen so far are Hermitian (easily proven).

3.2.1 Eigenvalues and Eigenfunctions of Hermitian operators

Suppose O is a Hermitian operator, with eigenvalues A,, and normalised eigenfunctions U,,(x). Then

)\m/y;ym = /y;Oym
= AZ/y:nyﬂ

Putting m = n gives A\, real, and m # n gives that

/ynyi‘n =0.

Any decaying U(x) can be written as a linear combination of the U,.
It is postulated that :-

e Each dynamical variable is represented by a Hermitian operator,



o If the normalised wavefunction at a given time is ¢(x) = > a, Uy (x), with the U, normalised eigen-
functions, then the probability that the particle is in state n is |an|2.

e If an experiment is carried out and the particle is found to be in state n, then immediately afterwards
Y(x) = U, (x). Further evolution of the system is governed by the Schrédinger equation.

We can simultaneously measure observables whose operators commute, since such operators have a com-
plete set of simultaneous eigenfunctions.

3.3 Expection

A measurement of O gives outcome \,, with probability |an|2. The expectation of O, (O) =3\, |an|2.
It is easy to prove that (O) = [¢*Ov.
In a stationary state, (x) and (p) are constant.
It is easy to see that (F) is independent of time, and this can be interpreted as conservation of energy.

3.4 Uncertainty Principle
The uncertainty of the observable O is AO, where (AO)? = ((O — (0))?). There are wavefunctions which

have AO = 0. Given two observables with commuting operators, we can make AO; and AQs arbitrarily
small by choosing simultaneous eigenfunctions. We have an inequality

(AO1)*(AO02)* > =(i[01, 02]),

N

which gives the Heisenberg Uncertainty principle
1
AxAp > §h

The Gaussian achieves equality.

4 Schrodinger Equation in Three Dimensions

Assume a spherically symmetric potential U(r) and look at the spherically symmetric stationary states x(r).
Get

—h2 0%ry
2mr Or?

+U(r)x = Ex.
with x(0) finite and lim,_o x = 0 for a bound state. Let o(r) = rx(r) to get something familiar...

—h? 020
%W + U('I")O' = EO’,
0(0) = 0, which gives the 1-D Schrédinger equation on the whole line, with a reflection symmetric potential
and an odd parity o.

The spherical harmonic oscillator (U(r) = 3mw?r?) and potential well (U(r) = 0(r < a),Us(r > a))
follow through, with the proviso that no bound states need exist for the potential well.

4.1 Spherically symmetric bound states for Hydrogen atom

Let U(r) = %ﬁ, with 8 = % and solve
—h% 0%y 28)() _ Bx

gXx 29X — Ex.
2m€(5r2 r Or r X



Let 12 = % anda:—%g—gﬁ.

?x 20y « 9
gX 2O Ty 2y =
or? + r or + PX X
Asymptotically, x ~ e™*", so put x(r) = f(r)e™"" and try a power series solution for f to get

an 2vn — «
an_1 nn+1)

The series must terminate, otherwise x ~ €*”, so a = 2vn for some n.

—mef? —meet 1
EN = = p) SR
2N2h2 32m2eth? N2

as in the Bohr model.

X~ = Ln(vr)e™", where Ly is the N*" Laguerre polynomial. For normalisation,

47r/ X2 (r)ridr = 1.
0

The Bohr radius is Ry = 2 = mh—:ﬁ In the N'" state, (r) = 2N2Ry. Get spectral lines etc..

4.2 Angular Momentum Operators

L=xAp

Lj = ihejklxk

Qxl
It can be shown by expanding out that

[Lj, Lk] = ihéjlel.
Define L? = L% + L3 + L3. Now L? commutes with all the L; (use [A, B?| = [A, B] B+ B|[A, B]).
Now

[Li, :Ej] = iheijkxk,

[Li,pj] = iheijrpr
and
[L;,U(r)] = 0 for spherically symmetric U.
It is now easy to show that [L;, V?] = 0 and so [L;,H] = 0 and [L? H| = 0. Thus H,L? and Ls

commute if the potential is spherically symmetric. L3 is the conventional choice of component. Thus the
simultaneous eigenfunctions of H,L? and L3 form a complete set of functions.

10



4.3 Eigenfunctions of L? and Ls

For Lg,
af
_mé)—(b Af
gives
f(@) =eme.

Since the eigenfunction should be unchanged by ¢ — ¢ + 27w, m € Z. The possible values of L3 are
an integer x A, which looks like Bohr’s hypothesis. The simultaneous eigenfunctions of Lz and L2 are the
spherical harmonics, which, un-normalised, are

Yim(0,¢) = Py (0)e™?, 1 >0and —1<m <I.

|m]|
Py, is an associated Legendre function P, () = (sin 0)'“‘%&"080) and P, is the I*" Legendre poly-
nomial.
Or, P, ,, is the solution to

-1 9 0 m?
The eigenvalues are L3Y] ,,, = hmY ,, and L2Y, ,,, = R21(l + 1).
4.4 Schrodinger Equation with spherically symmetric potential

—R% (0%x 20y 1 1 9 (. 0Ox 1 9%y
—M(wﬁWW(—smm(l 939)+sinzea72>)+U“)X‘EX

Separate variables to put x(r, 0, ¢) = g(r)Y;,m (0, ). This simplifies the above equation to

—h? (0%g 20g R% 11+ 1)
m(whar)*(lm”m 2 )Q—Eg'

1(1+1)

There is an effective potential of U(r) + % -

with E < 0.
Put a = 27%F and v? = =22<E Asymptotically g(r) = e ", so try g(r) = e~*" f(r). The equation now
simplifies to

, giving a centrifugal repulsion. We seek bound states

32f+<g_2)3f l(l+1)f+%(a—2u)f:0.

or? or r2
Try a series solution f(r) = ZZOZO a,r™ 9. The indicial equation gives o = [, and the rest reduces to

an _ (n+1)2v—a
an1 nn+20+1)

. This must terminate, so v = (n Ty or o= 2uN. Ex = 32*:2175;12 +7z is familiar. The complete unnormalised

wavefunction

ar —ar
XNJ,m(ra 97 ¢) = TILNJ(_)e 2N }/27771(9; ¢)

2N

Ly, is a generalised Laguerre polynomial.
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4.5 Energy Levels
Energy only depends on N (the principal quantum number).

—mee* 1

Ey = e
N 32m2e3h? N2

The allowed values for [, m for given N are 0 < < N and —I < m < [. The total degeneracy of FEy is
f\igl(Zl + 1) = N2, This large degeneracy is a feature of the Coulomb potential.
N is called the principal quantum number, [ is the total angular momentum quantum number and m is
the magnetic quantum number (a magnetic field along 3"¢ axis removes this degeneracy.

4.6 Relation with Bohr orbit

The Bohr picture emerges if N is large, [ & N. If m = [ = N then the electron has an angular momentum
component about the 3"¢ axis ~ AN and the total angular momentum ~ AN .

Consider the radial part of the wavefunction with { = N — 1, g(r) = rle=x . The radial probability
density is proportional to r2¢%(r) ~ r2Ne~®" N, which has a maximum at r = % = N2Ry, agreeing with
the Bohr model.

The syllabus ends here. The lecturer went on to discuss atoms with more than one electron. It was
covered at approximately A-level Chemistry standard (although considerably quicker).
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